Статистический анализ для диссертаций на заказ
Статистика в медицинских и биологических исследованиях Статьи по статистическому анализу Диссертации Книги для научной работы Статистический анализ для диссертаций на заказ
заказать статистический анализ для диссертации

Статистический анализ для диссертаций на заказ

Мы консультируем по всем вопросам статистического анализа в медико-биологических исследованиях, и, при необходимости, помогаем его провести 

Подробнее>>>


 

 


Заказать статистический анализ для диссертации Обратная связь

SiteHeart

278679709

 

Медицинская и санитарная статистикаПараметрические методы оценки достоверности результатов статистических исследований

Мерков А.М., Поляков Л.Е. Санитарная статистика (пособие для врачей).М.: Медицина.-1974.-384С.

 

Вычисления Параметрические методы оценки достоверности результатов статистических исследованийи mx для каждого ряда можно произвести обычным путем, но для упрощения расчетов можно использовать следующую формулу, удобную для применения при малых числах наблюдений :

Параметрические методы оценки достоверности результатов статистических исследований.

Упрощение расчетов при использовании этой формулы достигается тем, что вместо вычисления σ и m ограничиваются определением Параметрические методы оценки достоверности результатов статистических исследованийдля каждого ряда чисел, что значительно облегчает вычислительную работу (v – о тдельные наблюдения, варианты). В данном примере:

Σv12= 62+52+72+42 +82 +52 =288 , а

Σv22 = 22 +32 +42 + 22 +72+52 42 +32 =132.

Параметрические методы оценки достоверности результатов статистических исследованийкак указано было выше, равняются соответственно 5,75 и 3,75; их квадраты Параметрические методы оценки достоверности результатов статистических исследований.

Подставив все эти числа в приведенную выше формулу, получим:

Параметрические методы оценки достоверности результатов статистических исследований

Оценивая t по данным приложения 2, видим, что при n` =8 +8-2=14 в графе 2 этой таблицы стоит величина 2.14. Следовательно, для достоверности утверждения неслучайности различия величин и , с вероятностью ошибки не более чем 0, 05 (не более чем 5%) достаточно, чтобы t было не менее чем 2.14. В данном примере t =2,25. Значит, действие двух п риведенных видов обезболивания на снидение кровяного давления действительно различно и это различие может считаться статистически доказанным.

Оценка достоверности интенсивных коэффициентов заболеваемости при наличии повторных заболеваний. Формула средней ошибки показателя Параметрические методы оценки достоверности результатов статистических исследованийпригодна для оценки показателей только в случаях так называемого альтернативного варьирования, т.е. тогда, когда возможны только два исхода (умер или не умер, заболел данной болезнью или не заболел, привить против данного заболевания или не привит и т.п.).

По этой формуле можно исчислять средние ошибки коэффициентов смертности, летальности, а также заболеваемости теми болезнями, которыми, как правило, можно заболеть только один раз (хронические болезни – коронаросклероз, злокачествен ные опухоли, острозаразные заболевания, дающие длительный иммунитет, и т.п.) в течение жизни или хотя бы только один раз за период наблюдения (обычно год).

Определить среднюю ошибку по указанной выше формуле для коэффциентов общей заболеваемости (т.е. заболеваемости всеми болезнями, вместе взятыми) или заболеваемости с временной утратой трудоспособности неправильно.

Практически в течение года человек может болеть несколько раз различными болезнями или даже одной и той же болезнью, длящейся относительно недолго и не дающей стойкого иммунитета (например, грипп, острый катар верхних дыхательных п утей, ангина, пневмония и др.). Случаев временной нетрудоспособности в связи с заболеванием также может быть несколько за год у одного и того же работающего не только в связи с заболеваниями некоторыми острыми болезнями, но и по поводу обострений хрониче ских болезней.

В таких случаях средние ошибки показателей заболеваемости следует рассчитывать по формуле средней ошибки средних величин, т.е.

Параметрические методы оценки достоверности результатов статистических исследований, строя вариационные ряды, где вариантами являются числа заболеваний или случаев временной нетрудоспособности в связи с заболеванием в течение года ( 0;1;2;3;4 и т.д.), а частотами – числа болевших данное число раз.

Однако такие расчеты, правильные теоретически, трудно осуществимы на практике, так как требуют кропотливой работы по распределению наблюдаемой группы населения на не болевших ни разу за год, болевших один раз, два раза и т.д.

Трудность этой работы зачастую заставляет вовсе отказываться от расчета средних ошибок коэффициентов заболеваемости, а следовательно, и от статистической оценки достоверности их разности.

В подобной ситуации допустимо приближенное вычисление средней ошибки показателей, предложенное В.А.Мозгляковой. Исходя из предположения, что распределение по числу заболеваний во многих случаях близко к так называемому распределени ю Пуассона, при котором наибольшие частоты соответствуют не средним, а наименьшим вариантам, В.А.Мозглякова предложила в целях упрощения пользоваться расчетом средних квадратических отклонений и средних ошибок уровней заболеваемости по формулам, пригодны м для распределения Пуассона, а именно:

Параметрические методы оценки достоверности результатов статистических исследований а Параметрические методы оценки достоверности результатов статистических исследований.

Хорошее соответствие фактического распределения кратности заболеваний теоретическому распределению Пуассона имеет место при числе наблюдений 100-150 и средней величине коэффициента заболев аемости 1,0 на 1 человека. Если коэффициент больше 1.5, то рекомендуемым расчетом не следует пользоваться.

Описанные методы оценки достоверности результатов статистического исследования с помощью критерия t (критерий Стьюдента) в основном пригодны для так называемого нормального распределения, т.е. такого, при котором крайние значения (самые малые и самые большие) вариант встречаются редко, а наиболее часты варианты. Близкие по своей величине к средней арифметической ряда; или для состояния (да-нет, жив-умер и т.п.). Методы оценки достоверности различия параметров таких вариационных рядов называются параметрическими.

Однако характер распределения медико-биологических явлений нередко отличается от нормального. Проводя новые исследования, врач-экспериментатор часто не знает, какому закону варьирования будут следовать результаты, полученные в нескольких опытах, а относительно небольшое число проведенных наблюдений не позволяет ему определить форму распределения. В этих случаях оценку достоверности следует производить с применением так называемых непараметрических критериев.

 

Оглавление

 

 

 

  заказать статистический анализ для диссертации
Статистический анализ для диссертаций на заказ

Рейтинг@Mail.ru